Four non-abelian groups of order p4 as Galois groups IM Michailov Journal of Algebra 307 (1), 287-299, 2007 | 15 | 2007 |

Groups of order 32 as Galois groups I Michailov Serdica Mathematical Journal 33 (1), 1p-34p, 2007 | 14 | 2007 |

Noether’s problem for abelian extensions of cyclic p-groups I Michailov Pacific Journal of Mathematics 270 (1), 167-189, 2014 | 10 | 2014 |

Embedding obstructions for the cyclic and modular 2-groups I Michailov Math. Balkanica (NS) 21 (1-2), 31-50, 2007 | 10 | 2007 |

Embedding obstructions for the dihedral, semidihedral, and quaternion 2-groups IM Michailov Journal of Algebra 245 (1), 355-369, 2001 | 10 | 2001 |

Embedding obstructions for the generalized quaternion group IM Michailov, NP Ziapkov Journal of Algebra 226 (1), 375-389, 2000 | 10 | 2000 |

Bogomolov multipliers for unitriangular groups IM Michailov arXiv preprint arXiv:1308.3408, 2013 | 8 | 2013 |

Noether’s problem for the groups with a cyclic subgroup of index 4 MC Kang, IM Michailov, J Zhou Transformation Groups 17 (4), 1037-1058, 2012 | 8 | 2012 |

On Galois cohomology and realizability of 2-groups as Galois groups I Michailov Open Mathematics 9 (2), 403-419, 2011 | 8 | 2011 |

Bogomolov multipliers for some p-groups of nilpotency class 2 I Michailov Acta Mathematica Sinica, English Series 32 (5), 541-552, 2016 | 7 | 2016 |

Noether's problem for some groups of order I Michailov Acta Arithmetica 143, 277-290, 2010 | 7 | 2010 |

Induced orthogonal representations of Galois groups IM Michailov Journal of Algebra 322 (10), 3713-3732, 2009 | 7 | 2009 |

On realizability of -groups as Galois groups IM Michailov, NP Ziapkov arXiv preprint arXiv:1112.1522, 2011 | 5 | 2011 |

Attendant embedding problems I Michailov, N Ziapkov Comptes Rendus de l'Academie Bulgare des Sciences 53 (7), 7: 9, 2000 | 5 | 2000 |

Exact sequences in the theory of orthogonal representations of groups I Michailov CR de’l Academie bulgarie des Sciences 62 (9), 1057-1062, 2009 | 4 | 2009 |

Quaternion extensions of order 16 I Michailov Serdica Mathematical Journal 31 (3), 217p-228p, 2005 | 4 | 2005 |

Galois realizability of groups of orders p 5 and p 6 I Michailov Open Mathematics 11 (5), 910-923, 2013 | 3 | 2013 |

The inverse problem of Galois theory I Michailov, N Ziapkov Math. and Education in Math 37, 17-28, 2008 | 3 | 2008 |

Some groups of orders 8 and 16 as Galois groups over the p-adic number field I Michailov Math. Balk. New Series 19, 3-4, 2005 | 3 | 2005 |

Some groups of orders 8 and 16 as Galois groups over Q I Michailov Math. Balk. New Series 17, 1-2, 2003 | 3 | 2003 |