Ivo Michailov
Title
Cited by
Cited by
Year
Four non-abelian groups of order p4 as Galois groups
IM Michailov
Journal of Algebra 307 (1), 287-299, 2007
152007
Groups of order 32 as Galois groups
I Michailov
Serdica Mathematical Journal 33 (1), 1p-34p, 2007
142007
Noether’s problem for abelian extensions of cyclic p-groups
I Michailov
Pacific Journal of Mathematics 270 (1), 167-189, 2014
102014
Embedding obstructions for the cyclic and modular 2-groups
I Michailov
Math. Balkanica (NS) 21 (1-2), 31-50, 2007
102007
Embedding obstructions for the dihedral, semidihedral, and quaternion 2-groups
IM Michailov
Journal of Algebra 245 (1), 355-369, 2001
102001
Embedding obstructions for the generalized quaternion group
IM Michailov, NP Ziapkov
Journal of Algebra 226 (1), 375-389, 2000
102000
Bogomolov multipliers for unitriangular groups
IM Michailov
arXiv preprint arXiv:1308.3408, 2013
82013
Noether’s problem for the groups with a cyclic subgroup of index 4
MC Kang, IM Michailov, J Zhou
Transformation Groups 17 (4), 1037-1058, 2012
82012
On Galois cohomology and realizability of 2-groups as Galois groups
I Michailov
Open Mathematics 9 (2), 403-419, 2011
82011
Bogomolov multipliers for some p-groups of nilpotency class 2
I Michailov
Acta Mathematica Sinica, English Series 32 (5), 541-552, 2016
72016
Noether's problem for some groups of order
I Michailov
Acta Arithmetica 143, 277-290, 2010
72010
Induced orthogonal representations of Galois groups
IM Michailov
Journal of Algebra 322 (10), 3713-3732, 2009
72009
On realizability of -groups as Galois groups
IM Michailov, NP Ziapkov
arXiv preprint arXiv:1112.1522, 2011
52011
Attendant embedding problems
I Michailov, N Ziapkov
Comptes Rendus de l'Academie Bulgare des Sciences 53 (7), 7: 9, 2000
52000
Exact sequences in the theory of orthogonal representations of groups
I Michailov
CR de’l Academie bulgarie des Sciences 62 (9), 1057-1062, 2009
42009
Quaternion extensions of order 16
I Michailov
Serdica Mathematical Journal 31 (3), 217p-228p, 2005
42005
Galois realizability of groups of orders p 5 and p 6
I Michailov
Open Mathematics 11 (5), 910-923, 2013
32013
The inverse problem of Galois theory
I Michailov, N Ziapkov
Math. and Education in Math 37, 17-28, 2008
32008
Some groups of orders 8 and 16 as Galois groups over the p-adic number field
I Michailov
Math. Balk. New Series 19, 3-4, 2005
32005
Some groups of orders 8 and 16 as Galois groups over Q
I Michailov
Math. Balk. New Series 17, 1-2, 2003
32003
The system can't perform the operation now. Try again later.
Articles 1–20