Laser ignition of nanocomposite thermites JJ Granier, ML Pantoya Combustion and Flame 138 (4), 373-383, 2004 | 500 | 2004 |
Combustion behavior of highly energetic thermites: Nano versus micron composites ML Pantoya, JJ Granier Propellants, Explosives, Pyrotechnics: An International Journal Dealing with …, 2005 | 443 | 2005 |
Combustion velocities and propagation mechanisms of metastable interstitial composites BS Bockmon, ML Pantoya, SF Son, BW Asay, JT Mang Journal of Applied Physics 98 (6), 2005 | 387 | 2005 |
Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique KB Plantier, ML Pantoya, AE Gash Combustion and Flame 140 (4), 299-309, 2005 | 275 | 2005 |
Effect of Al particle size on the thermal degradation of Al/Teflon mixtures DT Osborne, ML Pantoya Combustion Science and Technology 179 (8), 1467-1480, 2007 | 264 | 2007 |
Melt dispersion mechanism for fast reaction of nanothermites VI Levitas, BW Asay, SF Son, M Pantoya Applied Physics Letters 89 (7), 2006 | 258 | 2006 |
Fast reactions with nano-and micrometer aluminum: A study on oxidation versus fluorination KW Watson, ML Pantoya, VI Levitas Combustion and Flame 155 (4), 619-634, 2008 | 228 | 2008 |
Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal VI Levitas, BW Asay, SF Son, M Pantoya Journal of Applied Physics 101 (8), 2007 | 216 | 2007 |
Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3 J Sun, ML Pantoya, SL Simon Thermochimica Acta 444 (2), 117-127, 2006 | 199 | 2006 |
Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: Critical experiments and controlling parameters VI Levitas, ML Pantoya, B Dikici Applied Physics Letters 92 (1), 2008 | 177 | 2008 |
The influence of alumina passivation on nano-Al/Teflon reactions ML Pantoya, SW Dean Thermochimica acta 493 (1-2), 109-110, 2009 | 157 | 2009 |
Activating aluminum reactivity with fluoropolymer coatings for improved energetic composite combustion J McCollum, ML Pantoya, ST Iacono ACS applied materials & interfaces 7 (33), 18742-18749, 2015 | 156 | 2015 |
Impact ignition of nano and micron composite energetic materials EM Hunt, S Malcolm, ML Pantoya, F Davis International Journal of Impact Engineering 36 (6), 842-846, 2009 | 143 | 2009 |
Tuning energetic material reactivity using surface functionalization of aluminum fuels KS Kappagantula, C Farley, ML Pantoya, J Horn The Journal of Physical Chemistry C 116 (46), 24469-24475, 2012 | 132 | 2012 |
Ignition dynamics and activation energies of metallic thermites: From nano-to micron-scale particulate composites EM Hunt, ML Pantoya Journal of applied physics 98 (3), 2005 | 126 | 2005 |
The aluminium and iodine pentoxide reaction for the destruction of spore forming bacteria BR Clark, ML Pantoya Physical Chemistry Chemical Physics 12 (39), 12653-12657, 2010 | 119 | 2010 |
Effect of the alumina shell on the melting temperature depression for aluminum nanoparticles VI Levitas, ML Pantoya, G Chauhan, I Rivero The Journal of Physical Chemistry C 113 (32), 14088-14096, 2009 | 114 | 2009 |
Developing an Engineering Identity in Early Childhood. ML Pantoya, Z Aguirre-Munoz, EM Hunt American Journal of Engineering Education 6 (2), 61-68, 2015 | 109 | 2015 |
Effect of bulk density on reaction propagation in nanothermites and micron thermites ML Pantoya, VI Levitas, JJ Granier, JB Henderson Journal of Propulsion and Power 25 (2), 465-470, 2009 | 102 | 2009 |
Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide EM Hunt, KB Plantier, ML Pantoya Acta Materialia 52 (11), 3183-3191, 2004 | 99 | 2004 |