On oscillation of differential and difference equations with non-monotone delays E Braverman, B Karpuz Appl. Math. Comput. 218 (7), 3880--3887, 2011 | 105 | 2011 |

Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients B Karpuz Electron. J. Qual. Theory Differ. Equ. 2009 (34), 1--14, 2009 | 95 | 2009 |

Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equations B Karpuz, Ö Öcalan, S Öztürk Glasg. Math. J. 52 (1), 107--114, 2010 | 62 | 2010 |

Asymptotic behaviour of bounded solutions of a class of higher-order neutral dynamic equations B Karpuz Appl. Math. Comput. 215 (6), 2174--2183, 2009 | 59 | 2009 |

Properties of the Laplace transform on time scales with arbitrary graininess M Bohner, GS Guseinov, B Karpuz Integral Transforms Spec. Funct. 22 (11), 785-800, 2011 | 51 | 2011 |

Iterated oscillation criteria for delay dynamic equations of first order M Bohner, B Karpuz, Ö Öcalan Adv. Difference Equ. 2008 (4586), 12 pp., 2008 | 49 | 2008 |

Sufficient conditions for the oscillation and asymptotic beaviour of higher-order dynamic equations of neutral type B Karpuz Appl. Math. Comput. 221, 453--462, 2013 | 38 | 2013 |

Kamenev-type oscillation criteria for higher-order neutral delay dynamic equations LH Erbe, B Karpuz, AC Peterson Int. J. Difference Equ. 6 (1), 1--16, 2011 | 38 | 2011 |

Volterra theory on time scales B Karpuz Results Math. 65 (3), 263--292, 2014 | 36 | 2014 |

A generalization of Opial’s inequality and applications to second-order dynamic equations B Karpuz, B Kaymakçalan, Ö Öcalan Differ. Equ. Dyn. Syst. 18 (1-2), 11--18, 2010 | 34 | 2010 |

Nonoscillation of first order dynamic equations with several delays E Braverman, B Karpuz Adv. Difference Equ. 2010 (873459), 22 pp., 2010 | 30 | 2010 |

Oscillation criteria for a class of second-order neutral delay differential equations B Karpuz, JV Manojlović, Ö Öcalan, Y Shoukaku Appl. Math. Comput. 210 (2), 303--312, 2009 | 30 | 2009 |

Oscillation theorems for second-order nonlinear delay differential equations of neutral type B Karpuz, SS Santra Hacet. J. Math. Stat. 48 (3), 633--643, 2019 | 29 | 2019 |

Generalized Ostrowski's inequality on time scales B Karpuz, UM Özkan JIPAM. J. Inequal. Pure Appl. Math. 9 (4), 1--15, 2008 | 28 | 2008 |

Existence and uniqueness of solutions to systems of delay dynamic equations on time scales B Karpuz Int. J. Math. Comput. 10 (M11), 48--58, 2011 | 27 | 2011 |

On oscillation and asymptotic behaviour of a higher order functional difference equation of neutral type B Karpuz, R Rath, SK Rath Int. J. Difference Equ. 4 (1), 69--96, 2009 | 25 | 2009 |

Necessary and sufficient conditions on asymptotic behaviour of solutions of forced neutral delay dynamic equations B Karpuz, Ö Öcalan Nonlinear Anal. 71 (7), 3063--3071, 2009 | 24 | 2009 |

Sharp oscillation and nonoscillation tests for linear difference equations B Karpuz J. Difference Equ. Appl. 23 (12), 1929--1942, 2017 | 19 | 2017 |

Oscillation of a class of difference equations of second order B Karpuz, Ö Öcalan, MK Yıldız Math. Comput. Modelling 49 (5), 912--917, 2009 | 19 | 2009 |

Hille–Nehari theorems for dynamic equations with a time scale independent critical constant B Karpuz Appl. Math. Comput. 346, 336--351, 2019 | 18 | 2019 |