Andrew Saxe
Andrew Saxe
Sir Henry Dale Fellow & Associate Professor, Department of Experimental Psychology, Oxford
Verified email at psy.ox.ac.uk - Homepage
Title
Cited by
Cited by
Year
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
AM Saxe, JL McClelland, S Ganguli
arXiv preprint arXiv:1312.6120, 2013
10832013
Measuring invariances in deep networks
I Goodfellow, H Lee, Q Le, A Saxe, A Ng
Advances in neural information processing systems 22, 646-654, 2009
4452009
On random weights and unsupervised feature learning
AM Saxe, PW Koh, Z Chen, M Bhand, B Suresh, AY Ng
Icml, 2011
4142011
Qualitatively characterizing neural network optimization problems
IJ Goodfellow, O Vinyals, AM Saxe
arXiv preprint arXiv:1412.6544, 2014
3102014
On the information bottleneck theory of deep learning
AM Saxe, Y Bansal, J Dapello, M Advani, A Kolchinsky, BD Tracey, ...
Journal of Statistical Mechanics: Theory and Experiment 2019 (12), 124020, 2019
2022019
High-dimensional dynamics of generalization error in neural networks
MS Advani, AM Saxe, H Sompolinsky
Neural Networks 132, 428-446, 2020
1822020
A deep learning framework for neuroscience
BA Richards, TP Lillicrap, P Beaudoin, Y Bengio, R Bogacz, ...
Nature neuroscience 22 (11), 1761-1770, 2019
1552019
Acquisition of decision making criteria: reward rate ultimately beats accuracy
F Balci, P Simen, R Niyogi, A Saxe, JA Hughes, P Holmes, JD Cohen
Attention, Perception, & Psychophysics 73 (2), 640-657, 2011
1522011
Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices
H Monajemi, S Jafarpour, M Gavish, DL Donoho, ...
Proceedings of the National Academy of Sciences 110 (4), 1181-1186, 2013
1002013
A mathematical theory of semantic development in deep neural networks
AM Saxe, JL McClelland, S Ganguli
Proceedings of the National Academy of Sciences 116 (23), 11537-11546, 2019
622019
Learning hierarchical category structure in deep neural networks
AM Saxe, JL McClelland, S Ganguli
Proceedings of the 35th annual meeting of the Cognitive Science Society …, 0
61*
Unsupervised learning models of primary cortical receptive fields and receptive field plasticity
A Saxe, M Bhand, R Mudur, B Suresh, AY Ng
Shawe-Taylor, J.; Zemel, R.; Bartlett, P, 2011
562011
Multitasking capability versus learning efficiency in neural network architectures
S Musslick, A Saxe, K Özcimder, B Dey, G Henselman, JD Cohen
Cognitive Science Society, 2017
512017
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup
S Goldt, MS Advani, AM Saxe, F Krzakala, L Zdeborová
arXiv preprint arXiv:1906.08632, 2019
372019
Active long term memory networks
T Furlanello, J Zhao, AM Saxe, L Itti, BS Tjan
arXiv preprint arXiv:1606.02355, 2016
342016
Modeling cortical representational plasticity with unsupervised feature learning
A Saxe, M Bhand, R Mudur, B Suresh, A Ng
Poster presented at COSYNE, 24-27, 2011
332011
Energy–entropy competition and the effectiveness of stochastic gradient descent in machine learning
Y Zhang, AM Saxe, MS Advani, AA Lee
Molecular Physics 116 (21-22), 3214-3223, 2018
292018
DARPA Urban Challenge Princeton University Technical Paper
AL Kornhauser, A Atreya, B Cattle, S Momen, B Collins, A Downey, ...
Princeton University: Princeton, NJ, USA, 2007
232007
Hierarchy through composition with multitask LMDPs
AM Saxe, AC Earle, B Rosman
International Conference on Machine Learning, 3017-3026, 2017
212017
If deep learning is the answer, what is the question?
A Saxe, S Nelli, C Summerfield
Nature Reviews Neuroscience, 1-13, 2020
16*2020
The system can't perform the operation now. Try again later.
Articles 1–20