The Fourier spectrum of critical percolation C Garban, G Pete, O Schramm Acta Mathematica 205 (1), 19-104, 2010 | 100 | 2010 |
Liouville Brownian motion C Garban, R Rhodes, V Vargas The Annals of Probability 44 (4), 3076-3110, 2016 | 97 | 2016 |
Noise sensitivity of Boolean functions and percolation C Garban, JE Steif Cambridge University Press, 2014 | 85 | 2014 |
Pivotal, cluster, and interface measures for critical planar percolation C Garban, G Pete, O Schramm Journal of the American Mathematical Society 26 (4), 939-1024, 2013 | 83 | 2013 |
On the scaling limits of planar percolation O Schramm, S Smirnov, C Garban The Annals of Probability 39 (5), 1768-1814, 2011 | 82 | 2011 |
Planar Ising magnetization field I. Uniqueness of the critical scaling limit F Camia, C Garban, CM Newman The Annals of Probability, 528-571, 2015 | 67 | 2015 |
The scaling limits of near-critical and dynamical percolation C Garban, G Pete, O Schramm Journal of the European Mathematical Society 20 (Issue 5), 1195--1268, 2018 | 66* | 2018 |
Quantum Gravity and the KPZ formula [after Duplantier-Sheffield] C Garban Astérisque, 315-354, 2013 | 62* | 2013 |
On the heat kernel and the Dirichlet form of Liouville Brownian motion R Rhodes, C Garban, V Vargas Electronic Journal of Probability 19, 1-25, 2014 | 49 | 2014 |
A dissipative random velocity field for fully developed fluid turbulence RM Pereira, C Garban, L Chevillard Journal of Fluid Mechanics 794, 369-408, 2016 | 40 | 2016 |
Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits F Camia, C Garban, CM Newman Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 52 (1 …, 2016 | 39 | 2016 |
KPZ formula derived from Liouville heat kernel N Berestycki, C Garban, R Rhodes, V Vargas Journal of the London Mathematical Society 94 (1), 186-208, 2016 | 33 | 2016 |
The near-critical planar FK-Ising model H Duminil-Copin, C Garban, G Pete Communications in Mathematical Physics 326 (1), 1-35, 2014 | 30 | 2014 |
The expected area of the filled planar Brownian loop is π/5 C Garban, JAT Ferreras Communications in mathematical physics 264 (3), 797-810, 2006 | 30 | 2006 |
The scaling limits of the minimal spanning tree and invasion percolation in the plane C Garban, G Pete, O Schramm The Annals of Probability 46 (6), 3501-3557, 2018 | 24 | 2018 |
Coalescing Brownian flows: a new approach N Berestycki, C Garban, A Sen The Annals of Probability 43 (6), 3177-3215, 2015 | 23 | 2015 |
The Ising magnetization exponent on is 1/15 F Camia, C Garban, CM Newman Probability Theory and Related Fields 160 (Issue 1-2), 175-187, 2014 | 21 | 2014 |
Dynamical Liouville C Garban Journal of Functional Analysis 278 (6), 108351, 2020 | 20 | 2020 |
On a skewed and multifractal unidimensional random field, as a probabilistic representation of Kolmogorov’s views on turbulence L Chevillard, C Garban, R Rhodes, V Vargas Annales Henri Poincaré 20 (11), 3693-3741, 2019 | 20 | 2019 |
Exclusion sensitivity of Boolean functions EI Broman, C Garban, JE Steif Probability theory and related fields 155 (3), 621-663, 2013 | 19 | 2013 |