Kurt Anstreicher
Kurt Anstreicher
Professor of Management Sciences, University of Iowa
Verified email at uiowa.edu - Homepage
Title
Cited by
Cited by
Year
Solving large quadratic assignment problems on computational grids
K Anstreicher, N Brixius, JP Goux, J Linderoth
Mathematical Programming 91 (3), 563-588, 2002
3172002
Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming
KM Anstreicher
Journal of Global Optimization 43 (2-3), 471-484, 2009
2522009
Recent advances in the solution of quadratic assignment problems
KM Anstreicher
Mathematical Programming 97 (1), 27-42, 2003
1772003
A monotonic projective algorithm for fractional linear programming
KM Anstreicher
Algorithmica 1 (1), 483-498, 1986
1771986
On Lagrangian relaxation of quadratic matrix constraints
K Anstreicher, H Wolkowicz
SIAM Journal on Matrix Analysis and Applications 22 (1), 41-55, 2000
1732000
On quadratic and O(sqrt{n} L) convergence of a predictor—corrector algorithm for LCP
Y Ye, K Anstreicher
Mathematical Programming 62 (1-3), 537-551, 1993
1721993
A new bound for the quadratic assignment problem based on convex quadratic programming
KM Anstreicher, NW Brixius
Mathematical Programming 89 (3), 341-357, 2001
1692001
Computable representations for convex hulls of low-dimensional quadratic forms
KM Anstreicher, S Burer
Mathematical Programming 124 (1-2), 33-43, 2010
1232010
On convex relaxations for quadratically constrained quadratic programming
KM Anstreicher
Mathematical Programming 136 (2), 233-251, 2012
1202012
Linear programming in O([n^3/ln n] L) operations
KM Anstreicher
SIAM Journal on Optimization 9 (4), 803-812, 1999
1141999
Second-order-cone constraints for extended trust-region subproblems
S Burer, KM Anstreicher
SIAM Journal on Optimization 23 (1), 432-451, 2013
982013
Solving quadratic assignment problems using convex quadratic programming relaxations
KM Anstreicher, NW Brixius
Optimization Methods and Software 16 (1-4), 49-68, 2001
982001
Two “well-known” properties of subgradient optimization
KM Anstreicher, LA Wolsey
Mathematical Programming 120 (1), 213-220, 2009
972009
On the convergence of an infeasible primal-dual interior-point method for convex programming
KM Anstreicher, JP Vial
Optimization Methods and Software 3 (4), 273-283, 1994
721994
A combined phase I-phase II projective algorithm for linear programming
KM Anstreicher
Mathematical Programming 43 (1), 209-223, 1989
701989
A long-step barrier method for convex quadratic programming
KM Anstreicher, D den Hertog, C Roos, T Terlaky
Algorithmica 10 (5), 365-382, 1993
611993
Long steps in an O(n^3 L) algorithm for linear programming
KM Anstreicher, RA Bosch
Mathematical Programming 54 (1-3), 251-265, 1992
601992
Using Gauss-Jordan elimination to compute the index, generalized nullspaces, and Drazin inverse
KM Anstreicher, UG Rothblum
Linear Algebra and its Applications 85, 221-239, 1987
521987
On Vaidya's volumetric cutting plane method for convex programming
KM Anstreicher
Mathematics of Operations Research 22 (1), 63-89, 1997
511997
A monotonic build-up simplex algorithm for linear programming
KM Anstreicher, T Terlaky
Operations Research 42 (3), 556-561, 1994
511994
The system can't perform the operation now. Try again later.
Articles 1–20