Real world applications of fractional models by Atangana–Baleanu fractional derivative E Bas, R Ozarslan Chaos, Solitons & Fractals 116, 121-125, 2018 | 132 | 2018 |
Fractional economic models based on market equilibrium in the frame of different type kernels B Acay, E Bas, T Abdeljawad Chaos, Solitons & Fractals 130, 109438, 2020 | 89 | 2020 |
Fractional singular Sturm-Liouville operator for Coulomb potential E Bas, F Metin Advances in Difference Equations 2013, 1-13, 2013 | 57 | 2013 |
Non-local fractional calculus from different viewpoint generated by truncated M-derivative B Acay, E Bas, T Abdeljawad Journal of Computational and Applied Mathematics 366, 112410, 2020 | 56 | 2020 |
Fractional models with singular and non-singular kernels for energy efficient buildings E Bas, B Acay, R Ozarslan Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (2), 2019 | 53 | 2019 |
Fundamental spectral theory of fractional singular Sturm‐Liouville operator E Bas Journal of Function Spaces 2013 (1), 915830, 2013 | 42 | 2013 |
Comparative simulations for solutions of fractional Sturm–Liouville problems with non-singular operators E Bas, R Ozarslan, D Baleanu, A Ercan Advances in Difference Equations 2018, 1-19, 2018 | 35 | 2018 |
Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel R Özarslan, E Baş, D Baleanu, B Acay | 25 | 2020 |
The direct spectral problem via local derivative including truncated Mittag-Leffler function E Bas, B Acay Applied Mathematics and Computation 367, 124787, 2020 | 24 | 2020 |
Novel fractional models compatible with real world problems R Ozarslan, A Ercan, E Bas Fractal and Fractional 3 (2), 15, 2019 | 24 | 2019 |
Fractional physical models based on falling body problem B Acay, R Ozarslan, E Bas AIMS Math 5 (3), 2608, 2020 | 22 | 2020 |
The Inverse Nodal problem for the fractional diffusion equation E Bas Acta Scientiarum. Technology 37 (2), 251-257, 2015 | 21 | 2015 |
The price adjustment equation with different types of conformable derivatives in market equilibrium E Bas, B Acay, R Ozarslan AIMS Math 4 (3), 805-820, 2019 | 20 | 2019 |
Fractional Solutions of Bessel Equation with N‐Method E Bas, R Yilmazer, E Panakhov The Scientific World Journal 2013 (1), 685695, 2013 | 20 | 2013 |
The uniqueness theorem for hydrogen atom equation E Bas, E Panakhov, R Yilmazer TWMS Journal of Pure and Applied Mathematics 4 (1), 20-28, 2013 | 16 | 2013 |
Sturm-Liouville problem via Coulomb type in difference equations E Bas, R Ozarslan Filomat 31 (4), 989-998, 2017 | 15 | 2017 |
Explicit solutions of fractional Schrödinger equation via fractional calculus operators R Yilmazer, E Bas Int. J. Open Problems Compt. Math 5 (2), 133-141, 2012 | 15 | 2012 |
β−type fractional Sturm‐Liouville Coulomb operator and applied results R Ozarslan, A Ercan, E Bas Mathematical Methods in the Applied Sciences 42 (18), 6648-6659, 2019 | 14 | 2019 |
Representation of solutions for Sturm–Liouville eigenvalue problems with generalized fractional derivative R Ozarslan, E Bas, D Baleanu Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (3), 2020 | 13 | 2020 |
Kinetic model for drying in frame of generalized fractional derivatives R Ozarslan, E Bas Fractal and Fractional 4 (2), 17, 2020 | 12 | 2020 |