Experimental and artificial neural network study of heat formation values of drilling and boring operations on Al 7075 T6 workpiece MT Ozkan NISCAIR-CSIR, India, 2013 | 32 | 2013 |
Uzman sistem yaklaşımı ile civata ve dişli çark seçimi MT Özkan, M Gülesin Turkish Journal of Engineering and Environmental Sciences 25 (3), 169-177, 2001 | 25 | 2001 |
EXPERIMENTAL DESIGN AND ARTIFICIAL NEURAL NETWORK MODEL FOR TURNING THE 50CrV4 (SAE 6150) ALLOY USING COATED CARBIDE/CERMET CUTTING TOOLS MB Murat Tolga Ozkan, Hasan Basri Ulas Materiali in technologie 48 (2), 227-237, 2014 | 21 | 2014 |
Vibration prediction in drilling processes with HSS and carbide drill bit by means of artificial neural networks YM Hasan Basri Ulas, Murat Tolga OZKAN Neural computing and applications 31 (9), 5547-5562, 2019 | 20 | 2019 |
The acute effects of preoperative ozone theraphy on surgical wound healing H Sahin, T Simsek, H Turkon, Y Kalkan, F Ozkul, M Ozkan, M Erbas, ... Acta cirurgica brasileira 31, 472-478, 2016 | 16 | 2016 |
Determination of the stress concentration factor (Kt) in a rectangular plate with a hole under tensile stress using different methods MT Ozkan, I Toktas Materials Testing 58 (10), 839-847, 2016 | 13 | 2016 |
Surface roughness during the turning process of a 50CrV4 (SAE 6150) steel and ANN based modeling MT Ozkan Materials Testing 57 (10), 889-896, 2015 | 12 | 2015 |
DETERMINATION OF THE NOTCH FACTOR FOR SHAFTS UNDER TORSIONAL STRESS WITH ARTIFICIAL NEURAL NETWORKS İS Murat Tolga Ozkan, Cengiz Eldem Materiali in technologie 48 (1), 81-91, 2014 | 12* | 2014 |
Experimental research and ANN modeling on the impact of the ball burnishing process on the mechanical properties of 5083 Al-Mg material IT Hüdayim Basak, Murat Tolga Ozkan Kovové materiály - Metallic Materials 57 (1), 61-74, 2019 | 11 | 2019 |
Notch sensitivity factor calculationin the design of shafts using artificial neural network system MT OZKAN Energy Education Science and Technology Part A: Energy Science and Research …, 2012 | 11 | 2012 |
Turning processes investigation of materials austenitic, martensitic and duplex stainless steels and prediction of cutting forces using artificial neural network (ANN) techniques HB Ulas, MT Ozkan Indian Journal of Engineering and Materials Sciences (IJEMS) 26 (2), 93-104, 2019 | 10 | 2019 |
Determination of stress concentration factors for shafts under tension MT Ozkan, F Erdemir Materials Testing 62 (4), 413-421, 2020 | 8 | 2020 |
Performance of coated and uncoated carbide/cermet cutting tools during turning HB Ulas, M Bilgin, HK Sezer, MT Ozkan Materials Testing 60 (9), 893-901, 2018 | 8 | 2018 |
Notch sensitivity factor determination with artificial neural network for shafts under the bending stress MT Özkan, C Eldem, E Köksal Pamukkale University Journal of Engineering Sciences 19 (1), 24-32, 2013 | 7 | 2013 |
Determination of theoretical stress concentration factor for circular/ elliptical holes with reinforcement using analytical, finite element method and artificial neural network … FE Murat Tolga OZKAN Neural Computing &Applications, 2021 | 4 | 2021 |
Bilgisayar destekli helisel yay tasarımı ve sonlu elemanlar analizi M ÖZKAN, K DÜNDAR, F GÜMÜŞ TÜBAV Bilim Dergisi 2 (2), 199-210, 2009 | 4 | 2009 |
Plastik parçalarda bir esneyerek kilitlenen bağlantı modelinin modal analizi F Erdemir, MT Ozkan Politeknik Dergisi 22 (4), 927-933, 2019 | 3 | 2019 |
Plastik Parçalarda Bir Esneyerek Kilitlenen Bağlantı Modelinin Modal Analizi MTO Fulya Erdemir Politeknik 22 (4), 927-933, 2019 | 3* | 2019 |
The selection of bolts and gears through expert system approach MT ÖZKAN, M GÜLESİN Turkish Journal of Engineering and Environmental Sciences 25 (3), 169-177, 2001 | 3 | 2001 |
Estimations of stress concentration factors Cw/Kts for helical circular/square cross sectional tension-compression springs and artificial neural network modelling MT Ozkan, I Toktas, SK Doganay Journal of Polytechnic 23 (3), 901-908, 2020 | 2 | 2020 |