Li Li (李力)
Başlık
Alıntı yapanlar
Alıntı yapanlar
Yıl
Bypassing the Kohn-Sham equations with machine learning
F Brockherde, L Vogt, L Li, ME Tuckerman, K Burke, KR Müller
Nature Communications 8 (1), 872, 2017
3632017
Tensor Field Networks: Rotation-and Translation-Equivariant Neural Networks for 3D Point Clouds
N Thomas, T Smidt, S Kearnes, L Yang, L Li, K Kohlhoff, P Riley
arXiv preprint arXiv:1802.08219, 2018
1332018
Optimization of molecules via deep reinforcement learning
Z Zhou, S Kearnes, L Li, RN Zare, P Riley
Scientific reports 9 (1), 1-10, 2019
1262019
Understanding Machine-learned Density Functionals
L Li, JC Snyder, IM Pelaschier, J Huang, UN Niranjan, P Duncan, M Rupp, ...
International Journal of Quantum Chemistry 116 (11), 819-833, 2016
1072016
Pure density functional for strong correlations and the thermodynamic limit from machine learning
L Li, TE Baker, SR White, K Burke
Phys. Rev. B 94 (24), 245129, 2016
812016
Understanding kernel ridge regression: Common behaviors from simple functions to density functionals
K Vu, JC Snyder, L Li, M Rupp, BF Chen, T Khelif, KR Müller, K Burke
International Journal of Quantum Chemistry 115 (16), 1115-1128, 2015
702015
Graded index photonic hole: Analytical and rigorous full wave solution
S Liu, L Li, Z Lin, HY Chen, J Zi, CT Chan
Physical Review B 82 (5), 054204, 2010
332010
Can exact conditions improve machine-learned density functionals?
J Hollingsworth, L Li, TE Baker, K Burke
The Journal of Chemical Physics 148 (24), 241743, 2018
272018
Quantum optimization with a novel gibbs objective function and ansatz architecture search
L Li, M Fan, M Coram, P Riley, S Leichenauer
Physical Review Research 2 (2), 023074, 2020
122020
Efficient prediction of 3D electron densities using machine learning
M Bogojeski, F Brockherde, L Vogt-Maranto, L Li, ME Tuckerman, K Burke, ...
NeurIPS 2018 Workshop on Machine Learning for Molecules and Materials, 2018
122018
Decoding Molecular Graph Embeddings with Reinforcement Learning
S Kearnes, L Li, P Riley
ICML 2019 Workshop on Learning and Reasoning with Graph-Structured Data, 2019
92019
Kohn-Sham equations as regularizer: Building prior knowledge into machine-learned physics
L Li, S Hoyer, R Pederson, R Sun, ED Cubuk, P Riley, K Burke
Physical Review Letters 126 (3), 036401, 2021
72021
Neural-Guided Symbolic Regression with Asymptotic Constraints
L Li, M Fan, R Singh, P Riley
arXiv preprint arXiv:1901.07714, 2019
6*2019
Improving Malware Detection Accuracy by Extracting Icon Information
S Pedro, AM Sepehr, L Li
IEEE International Conference on Multimedia Information Processing and Retrieval, 2018
3*2018
Investigating Quantum Approximate Optimization Algorithms under Bang-bang Protocols
D Liang, L Li, S Leichenauer
Physical Review Research 2 (3), 033402, 2020
22020
Lazy stochastic principal component analysis
M Wojnowicz, D Nguyen, L Li, X Zhao
IEEE International Conference on Data Mining Workshop, 2017
22017
Scaling Symbolic Methods using Gradients for Neural Model Explanation
SS Sahoo, S Venugopalan, L Li, R Singh, P Riley
arXiv preprint arXiv:2006.16322, 2020
12020
Recent developments in density functional approximations
L Li, K Burke
Handbook of Materials Modeling. Volume 1 Methods: Theory and Modeling 1, 2018
12018
Learning to Approximate Density Functionals
B Kalita, L Li, RJ McCarty, K Burke
Accounts of Chemical Research, 253002, 2021
2021
Scalable variational Monte Carlo with graph neural ansatz
L Yang, W Hu, L Li
NeurIPS 2020 Workshop on Machine Learning and the Physical Sciences, 2020
2020
Sistem, işlemi şu anda gerçekleştiremiyor. Daha sonra yeniden deneyin.
Makaleler 1–20