Follow
GÖKHAN SOYDAN
GÖKHAN SOYDAN
Bursa Uludag University, Department of Mathematics, Bursa-TURKEY
Verified email at uludag.edu.tr - Homepage
Title
Cited by
Cited by
Year
On the Diophantine Equation
IN Cangül, M Demirci, G Soydan, N Tzanakis
arXiv preprint arXiv:1001.2525, 2010
432010
A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation
M Le, G Soydan
arXiv preprint arXiv:2001.09617, 2020
382020
On the diophantine equation x 2+ 2a· 3b· 11c= y n
İ Cangül, M Demırcı, I Inam, F Luca, G Soydan
Mathematica Slovaca 63 (3), 647-659, 2013
332013
On the conjecture of Je\'smanowicz
G Soydan, M Demirci, IN Cangul, A Togbé
arXiv preprint arXiv:1706.05480, 2017
272017
On the Diophantine equation x2+ 2a19b= yn
G Soydan, M Ulas, H Zhu
Indian J. Pure Appl. Math 43 (3), 251-261, 2012
262012
On the Diophantine equation
G Soydan
arXiv preprint arXiv:1701.02466, 2017
242017
On the Diophantine equation (x+ 1) k+(x+ 2) k+...+(2x) k= yn
A Bérczes, I Pink, G Savaş, G Soydan
Journal of Number Theory 183, 326-351, 2018
202018
On the exponential Diophantine equation
H Zhu, M Le, G Soydan, A Togbé
Periodica Mathematica Hungarica 70, 233-247, 2015
192015
On the Diophantine equation
E Kizildere, T Miyazaki, G SOYDAN
Turkish Journal of Mathematics 42 (5), 2690-2698, 2018
142018
RATIONAL POINTS ON ELLIPTIC CURVES y² = x³ + a³ IN F p WHERE p = 1 (mod 6) IS PRIME
M Demirci, G Soydan, IN Cangul
The Rocky Mountain Journal of Mathematics, 1483-1491, 2007
132007
Complete solution of the Diophantine equation x2+ 5a11b= yn
G Soydan, N Tzanakis
Bull. of the Hellenic Math. Soc 60, 125-151, 2016
112016
The Diophantine Equation Revisited
D Bartoli, G Soydan
arXiv preprint arXiv:1909.06100, 2019
102019
On the Diophantine equation 2m+ nx2= yn
F Luca, G Soydan
Journal of Number Theory 132 (11), 2604-2609, 2012
102012
On the Diophantine equation x^ 2+ 7^{alpha}. 11^{beta}= y^ n
G Soydan
arXiv preprint arXiv:1201.0778, 2012
92012
An application of Baker’s method to the Jeśmanowicz’conjecture on primitive Pythagorean triples
M Le, G Soydan
Periodica Mathematica Hungarica 80 (1), 74-80, 2020
82020
On elliptic curves induced by rational Diophantine quadruples
A Dujella, G Soydan
72022
On a class of Lebesgue-Ljunggren-Nagell type equations
A Dąbrowski, N Günhan, G Soydan
Journal of Number Theory 215, 149-159, 2020
72020
On the Diophantine equation $(5pn^{2}-1)^{x}+(p (p-5) n^{2}+ 1)^{y}=(pn)^{z} $
E Kızıldere, G Soydan
arXiv preprint arXiv:2002.11366, 2020
72020
A p-adic look at the Diophantine equation x^{2}+ 11^{2k}= y^{n}
IN Cangul, G Soydan, Y Simsek
arXiv preprint arXiv:1112.5984, 2011
72011
Elliptic curves containing sequences of consecutive cubes
GS Celik, G Soydan
62018
The system can't perform the operation now. Try again later.
Articles 1–20