On the Diophantine Equation IN Cangül, M Demirci, G Soydan, N Tzanakis arXiv preprint arXiv:1001.2525, 2010 | 43 | 2010 |

A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation M Le, G Soydan arXiv preprint arXiv:2001.09617, 2020 | 38 | 2020 |

On the diophantine equation x 2+ 2a· 3b· 11c= y n İ Cangül, M Demırcı, I Inam, F Luca, G Soydan Mathematica Slovaca 63 (3), 647-659, 2013 | 33 | 2013 |

On the conjecture of Je\'smanowicz G Soydan, M Demirci, IN Cangul, A Togbé arXiv preprint arXiv:1706.05480, 2017 | 27 | 2017 |

On the Diophantine equation x2+ 2a19b= yn G Soydan, M Ulas, H Zhu Indian J. Pure Appl. Math 43 (3), 251-261, 2012 | 26 | 2012 |

On the Diophantine equation G Soydan arXiv preprint arXiv:1701.02466, 2017 | 24 | 2017 |

On the Diophantine equation (x+ 1) k+(x+ 2) k+...+(2x) k= yn A Bérczes, I Pink, G Savaş, G Soydan Journal of Number Theory 183, 326-351, 2018 | 20 | 2018 |

On the exponential Diophantine equation H Zhu, M Le, G Soydan, A Togbé Periodica Mathematica Hungarica 70, 233-247, 2015 | 19 | 2015 |

On the Diophantine equation E Kizildere, T Miyazaki, G SOYDAN Turkish Journal of Mathematics 42 (5), 2690-2698, 2018 | 14 | 2018 |

RATIONAL POINTS ON ELLIPTIC CURVES y² = x³ + a³ IN F _{p} WHERE p = 1 (mod 6) IS PRIMEM Demirci, G Soydan, IN Cangul The Rocky Mountain Journal of Mathematics, 1483-1491, 2007 | 13 | 2007 |

Complete solution of the Diophantine equation x2+ 5a11b= yn G Soydan, N Tzanakis Bull. of the Hellenic Math. Soc 60, 125-151, 2016 | 11 | 2016 |

The Diophantine Equation Revisited D Bartoli, G Soydan arXiv preprint arXiv:1909.06100, 2019 | 10 | 2019 |

On the Diophantine equation 2m+ nx2= yn F Luca, G Soydan Journal of Number Theory 132 (11), 2604-2609, 2012 | 10 | 2012 |

On the Diophantine equation x^ 2+ 7^{alpha}. 11^{beta}= y^ n G Soydan arXiv preprint arXiv:1201.0778, 2012 | 9 | 2012 |

An application of Baker’s method to the Jeśmanowicz’conjecture on primitive Pythagorean triples M Le, G Soydan Periodica Mathematica Hungarica 80 (1), 74-80, 2020 | 8 | 2020 |

On elliptic curves induced by rational Diophantine quadruples A Dujella, G Soydan | 7 | 2022 |

On a class of Lebesgue-Ljunggren-Nagell type equations A Dąbrowski, N Günhan, G Soydan Journal of Number Theory 215, 149-159, 2020 | 7 | 2020 |

On the Diophantine equation $(5pn^{2}-1)^{x}+(p (p-5) n^{2}+ 1)^{y}=(pn)^{z} $ E Kızıldere, G Soydan arXiv preprint arXiv:2002.11366, 2020 | 7 | 2020 |

A p-adic look at the Diophantine equation x^{2}+ 11^{2k}= y^{n} IN Cangul, G Soydan, Y Simsek arXiv preprint arXiv:1112.5984, 2011 | 7 | 2011 |

Elliptic curves containing sequences of consecutive cubes GS Celik, G Soydan | 6 | 2018 |