Follow
GÖKHAN SOYDAN
GÖKHAN SOYDAN
Bursa Uludag University, Department of Mathematics, Bursa-TURKEY
Verified email at uludag.edu.tr - Homepage
Title
Cited by
Cited by
Year
On the Diophantine Equation
IN Cangül, M Demirci, G Soydan, N Tzanakis
arXiv preprint arXiv:1001.2525, 2010
442010
A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation
M Le, G Soydan
arXiv preprint arXiv:2001.09617, 2020
352020
On the diophantine equation x 2+ 2a· 3b· 11c= y n
İ Cangül, M Demırcı, I Inam, F Luca, G Soydan
Mathematica Slovaca 63 (3), 647-659, 2013
332013
On the Diophantine equation x2+ 2a19b= yn
G Soydan, M Ulas, H Zhu
Indian J. Pure Appl. Math 43 (3), 251-261, 2012
272012
On the conjecture of Je\'smanowicz
G Soydan, M Demirci, IN Cangul, A Togbé
arXiv preprint arXiv:1706.05480, 2017
262017
On the Diophantine equation
G Soydan
arXiv preprint arXiv:1701.02466, 2017
242017
On the Diophantine equation (x+ 1) k+(x+ 2) k+...+(2x) k= yn
A Bérczes, I Pink, G Savaş, G Soydan
Journal of Number Theory 183, 326-351, 2018
192018
On the exponential Diophantine equation
H Zhu, M Le, G Soydan, A Togbé
Periodica Mathematica Hungarica 70, 233-247, 2015
192015
RATIONAL POINTS ON ELLIPTIC CURVES y² = x³ + a³ IN F p WHERE p = 1 (mod 6) IS PRIME
M Demirci, G Soydan, IN Cangul
The Rocky Mountain Journal of Mathematics, 1483-1491, 2007
132007
On the Diophantine equation
E Kizildere, T Miyazaki, G SOYDAN
Turkish Journal of Mathematics 42 (5), 2690-2698, 2018
122018
Complete solution of the Diophantine equation x2+ 5a11b= yn
G Soydan, N Tzanakis
Bull. Hellenic Math. Soc 60 (1), 125-151, 2016
112016
The Diophantine Equation Revisited
D Bartoli, G Soydan
arXiv preprint arXiv:1909.06100, 2019
92019
On the Diophantine equation 2m+ nx2= yn
F Luca, G Soydan
Journal of Number Theory 132 (11), 2604-2609, 2012
92012
On the Diophantine equation x^ 2+ 7^{alpha}. 11^{beta}= y^ n
G Soydan
arXiv preprint arXiv:1201.0778, 2012
92012
An application of Baker’s method to the Jeśmanowicz’conjecture on primitive Pythagorean triples
M Le, G Soydan
Periodica Mathematica Hungarica 80 (1), 74-80, 2020
82020
A note on the ternary purely exponential diophantine equation A x+ B y= C z with A+ B= C 2
E Kizildere, M Le, G Soydan
Studia Scientiarum Mathematicarum Hungarica 57 (2), 200-206, 2020
72020
On the Diophantine equation∑ k j= 1 jFp j= Fq n
G Soydan, L Németh, L Szalay
Arch. Math.(Brno) 54, 177-188, 2018
72018
A p-adic look at the Diophantine equation x^{2}+ 11^{2k}= y^{n}
IN Cangul, G Soydan, Y Simsek
arXiv preprint arXiv:1112.5984, 2011
72011
On a class of Lebesgue-Ljunggren-Nagell type equations
A Dąbrowski, N Günhan, G Soydan
Journal of Number Theory 215, 149-159, 2020
62020
On the Diophantine equation $(5pn^{2}-1)^{x}+(p (p-5) n^{2}+ 1)^{y}=(pn)^{z} $
E Kızıldere, G Soydan
arXiv preprint arXiv:2002.11366, 2020
62020
The system can't perform the operation now. Try again later.
Articles 1–20