Striving for simplicity: The all convolutional net JT Springenberg, A Dosovitskiy, T Brox, M Riedmiller arXiv preprint arXiv:1412.6806, 2014 | 2801 | 2014 |
Flownet: Learning optical flow with convolutional networks A Dosovitskiy, P Fischer, E Ilg, P Hausser, C Hazirbas, V Golkov, ... Proceedings of the IEEE international conference on computer vision, 2758-2766, 2015 | 2364* | 2015 |
Flownet 2.0: Evolution of optical flow estimation with deep networks E Ilg, N Mayer, T Saikia, M Keuper, A Dosovitskiy, T Brox Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 1585 | 2017 |
CARLA: An open urban driving simulator A Dosovitskiy, G Ros, F Codevilla, A Lopez, V Koltun Conference on Robot Learning (CoRL), 2017 | 1181 | 2017 |
A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation N Mayer, E Ilg, P Hausser, P Fischer, D Cremers, A Dosovitskiy, T Brox Proceedings of the IEEE conference on computer vision and pattern …, 2016 | 1159 | 2016 |
Generating images with perceptual similarity metrics based on deep networks A Dosovitskiy, T Brox arXiv preprint arXiv:1602.02644, 2016 | 749 | 2016 |
Learning to generate chairs with convolutional neural networks A Dosovitskiy, J Tobias Springenberg, T Brox Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2015 | 658 | 2015 |
Discriminative unsupervised feature learning with convolutional neural networks A Dosovitskiy, JT Springenberg, M Riedmiller, T Brox NIPS 2 (4), 2014 | 590 | 2014 |
Inverting visual representations with convolutional networks A Dosovitskiy, T Brox Proceedings of the IEEE conference on computer vision and pattern …, 2016 | 492* | 2016 |
Plug & play generative networks: Conditional iterative generation of images in latent space A Nguyen, J Clune, Y Bengio, A Dosovitskiy, J Yosinski Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017 | 473 | 2017 |
Demon: Depth and motion network for learning monocular stereo B Ummenhofer, H Zhou, J Uhrig, N Mayer, E Ilg, A Dosovitskiy, T Brox Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017 | 417 | 2017 |
Synthesizing the preferred inputs for neurons in neural networks via deep generator networks A Nguyen, A Dosovitskiy, J Yosinski, T Brox, J Clune arXiv preprint arXiv:1605.09304, 2016 | 403 | 2016 |
Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs M Tatarchenko, A Dosovitskiy, T Brox Proceedings of the IEEE International Conference on Computer Vision, 2088-2096, 2017 | 401 | 2017 |
End-to-end driving via conditional imitation learning F Codevilla, M Müller, A López, V Koltun, A Dosovitskiy International Conference on Robotics and Automation (ICRA), 2017 | 365 | 2017 |
Multi-view 3d models from single images with a convolutional network M Tatarchenko, A Dosovitskiy, T Brox European Conference on Computer Vision, 322-337, 2016 | 342* | 2016 |
Discriminative unsupervised feature learning with exemplar convolutional neural networks A Dosovitskiy, P Fischer, JT Springenberg, M Riedmiller, T Brox IEEE transactions on pattern analysis and machine intelligence 38 (9), 1734-1747, 2015 | 313 | 2015 |
Learning agile and dynamic motor skills for legged robots J Hwangbo, J Lee, A Dosovitskiy, D Bellicoso, V Tsounis, V Koltun, ... Science Robotics 4 (26), 2019 | 275 | 2019 |
Descriptor matching with convolutional neural networks: a comparison to sift P Fischer, A Dosovitskiy, T Brox arXiv preprint arXiv:1405.5769, 2014 | 253 | 2014 |
Learning to act by predicting the future A Dosovitskiy, V Koltun International Conference on Learning Representations (ICLR) 2017, 2016 | 232 | 2016 |
On evaluation of embodied navigation agents P Anderson, A Chang, DS Chaplot, A Dosovitskiy, S Gupta, V Koltun, ... arXiv preprint arXiv:1807.06757, 2018 | 172 | 2018 |