Kernel methods in system identification, machine learning and function estimation: A survey G Pillonetto, F Dinuzzo, T Chen, G De Nicolao, L Ljung Automatica 50 (3), 657-682, 2014 | 486 | 2014 |
On the estimation of transfer functions, regularizations and Gaussian processes—Revisited T Chen, H Ohlsson, L Ljung Automatica 48 (8), 1525-1535, 2012 | 297 | 2012 |
System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques T Chen, MS Andersen, L Ljung, A Chiuso, G Pillonetto IEEE Transactions on Automatic Control 59 (11), 2933-2945, 2014 | 115 | 2014 |
Implementation of algorithms for tuning parameters in regularized least squares problems in system identification T Chen, L Ljung Automatica 49 (7), 2213-2220, 2013 | 82 | 2013 |
Decentralized particle filter with arbitrary state decomposition T Chen, TB Schon, H Ohlsson, L Ljung IEEE Transactions on Signal Processing 59 (2), 465-478, 2010 | 51 | 2010 |
On kernel design for regularized LTI system identification T Chen Automatica 90, 109-122, 2018 | 48 | 2018 |
Regularized linear system identification using atomic, nuclear and kernel-based norms: The role of the stability constraint G Pillonetto, T Chen, A Chiuso, G De Nicolao, L Ljung Automatica 69, 137-149, 2016 | 39 | 2016 |
Transfer function and transient estimation by Gaussian process regression in the frequency domain J Lataire, T Chen Automatica 72, 217-229, 2016 | 37 | 2016 |
Maximum entropy kernels for system identification FP Carli, T Chen, L Ljung IEEE Transactions on Automatic Control 62 (3), 1471-1477, 2016 | 35 | 2016 |
Kernel selection in linear system identification part II: A classical perspective T Chen, H Ohlsson, GC Goodwin, L Ljung 2011 50th IEEE Conference on Decision and Control and European Control …, 2011 | 33 | 2011 |
Maximum entropy properties of discrete-time first-order stable spline kernel T Chen, T Ardeshiri, FP Carli, A Chiuso, L Ljung, G Pillonetto Automatica 66, 34-38, 2016 | 32 | 2016 |
A small gain approach to global stabilization of nonlinear feedforward systems with input unmodeled dynamics T Chen, J Huang Automatica 46 (6), 1028-1034, 2010 | 32 | 2010 |
On asymptotic properties of hyperparameter estimators for kernel-based regularization methods B Mu, T Chen, L Ljung Automatica 94, 381-395, 2018 | 30 | 2018 |
Global robust output regulation by state feedback for strict feedforward systems T Chen, J Huang IEEE Transactions on Automatic Control 54 (9), 2157-2163, 2009 | 30 | 2009 |
Regularized system identification using orthonormal basis functions T Chen, L Ljung 2015 European Control Conference (ECC), 1291-1296, 2015 | 29 | 2015 |
Comments on “State estimation for linear systems with state equality constraints”[Automatica 43 (2007) 1363–1368] T Chen Automatica 46 (11), 1929-1932, 2010 | 28 | 2010 |
What can regularization offer for estimation of dynamical systems? LLT Chen IFAC Proceedings Volumes 46 (11), 1-8, 2013 | 27 | 2013 |
Impulse response estimation with binary measurements: A regularized FIR model approach T Chen, Y Zhao, L Ljung IFAC Proceedings Volumes 45 (16), 113-118, 2012 | 24 | 2012 |
Disturbance attenuation of feedforward systems with dynamic uncertainty T Chen, J Huang IEEE Transactions on Automatic Control 53 (7), 1711-1717, 2008 | 24 | 2008 |
Constructive state space model induced kernels for regularized system identification T Chen, L Ljung IFAC Proceedings Volumes 47 (3), 1047-1052, 2014 | 21 | 2014 |