A geometric proof of Blundon’s inequalities D Andrica, C Barbu Math. Inequal. Appl 15 (2), 361-370, 2012 | 22 | 2012 |
Teoreme fundamentale din geometria triunghiului BD AB, DC AC, BD AB AB, D AC, DB AB, DC AE | 19 | 2008 |
Fundamental theorems of triangle geometry C Barbu Ed. Unique, Bacau, 2008 | 18 | 2008 |
A geometric way to generate Blundon type inequalities D Andrica, C Barbu, N Minculete arXiv preprint arXiv:1205.1145, 2012 | 13 | 2012 |
Menelaus’s theorem for hyperbolic quadrilaterals in the Einstein relativistic velocity model of hyperbolic geometry C Barbu Scientia Magna 6 (1), 19, 2010 | 11 | 2010 |
Jordan type inequalities using monotony of functions C Barbu, LI PIScoran J. Math. Inequal 8 (1), 83-89, 2014 | 9 | 2014 |
New aspects of Ionescu-Weitzenböck’s inequality E Stoica, N Minculete, C Barbu Balkan Journal of Geometry and Its Applications 21 (2), 95-101, 2016 | 8 | 2016 |
Trigonometric proof of Steiner-Lehmus theorem in hyperbolic geometry C Barbu Acta Universitatis Apulensis, 63-67, 2010 | 7 | 2010 |
THE HYPERBOLIC MENELAUS THEOREM IN THE POINCAR´ E DISC MODEL OF HYPERBOLIC GEOMETRY F Smarandache, C Barbu Infinite Study, 2010 | 7 | 2010 |
Pappus’s harmonic theorem in the Einstein relativistic velocity model of hyperbolic geometry LI Piscoran, C Barbu Stud. Univ. Babes-Bolyai Math 56 (1), 101-107, 2011 | 6 | 2011 |
The hyperbolic Stewart theorem in the Einstein relativistic velocity model of hyperbolic geometry C Barbu An. Univ. Oradea Fasc. Mat 18 (1), 133-138, 2011 | 6 | 2011 |
Smarandache’s pedal polygon theorem in the Poincaré disc model of hyperbolic geometry C Barbu Int. J. Math. Comb 1, 99-102, 2010 | 6 | 2010 |
The geometric proof to a sharp version of Blundon's inequalities D Andrica, C Barbu, LI PIScoran J. Math. Inequal 10 (4), 1137-1143, 2016 | 5 | 2016 |
The orthopole theorem in the Poincaré disc model of hyperbolic geometry C Barbu, LI Piscoran Acta Univ. Sapientiae Math 4, 20-25, 2012 | 4 | 2012 |
Smarandache’s Cevian Triangle Theorem in The Einstein Relativistic Velocity Model of Hyperbolic Geometry C Barbu Infinite Study, 2010 | 4 | 2010 |
Cevians of rank (k, l, m) in triangle N Minculete, C Barbu International Journal of Geometry 1 (2), 2012 | 3 | 2012 |
About the Japanese theorem N Minculete, C Barbu, G Szollosy Crux Mathematicorum 38, 188-193, 2012 | 3 | 2012 |
On Panaitopol and Jordan type inequalities C Barbu, LI PIScoran Unpublished manuscript, 0 | 3 | |
Remarks on a new metric in the unity disc of the complex plane LI Pişcoran, C Barbu Carpathian Journal of Mathematics, 239-244, 2014 | 2 | 2014 |
A new hyperbolic metric LI Piscoran, CI Barbu Differential Geometry-Dynamical Systems 15, 71-78, 2013 | 2 | 2013 |