Voronovskaja type approximation theorem for q-Szász-beta operators Ý Yüksel, Ü Dinlemez Applied Mathematics and Computation 235, 555-559, 2014 | 10 | 2014 |

A NOTE ON THE APPROXIMATION BY THE -HYBRID SUMMATION INTEGRAL TYPE OPERATORS Ü Dinlemez, Ý Yüksel, B Altýn | 9 | 2014 |

Approximation Properties of Generalized *λ*‐Bernstein–Stancu‐Type OperatorsQB Cai, G Torun, Ü Dinlemez Kantar Journal of Mathematics 2021 (1), 5590439, 2021 | 5 | 2021 |

Approximation properties for the genuine modified Bernstein-Durrmeyer-Stancu operators Q Cai, ÜD Kantar, B Cekim Applied Mathematics-A Journal of Chinese Universities 35, 468-478, 2020 | 5 | 2020 |

A voronovskaja-type theorem for a kind of durrmeyer-bernstein-stancu operators UD Kantar, G Ergelen Gazi University Journal of Science 32 (4), 1228-1236, 2019 | 5 | 2019 |

On the (p, q)-Stancu generalization of a Genuine Baskakov-Durrmeyer type operators ÃD Kantar, B AltÄ±n International Journal of Analysis and Applications 15 (2), 138-145, 2017 | 5 | 2017 |

Dunkl generalization of Szász Beta‐type operators B Çekim, Ü Dinlemez Kantar, Ý Yüksel Mathematical Methods in the Applied Sciences 40 (18), 7697-7704, 2017 | 4 | 2017 |

Convergence of the *q*-Stancu-Szász-Beta type operatorsÜ Dinlemez Journal of Inequalities and Applications 2014, 1-8, 2014 | 4 | 2014 |

Structural Stability for a Class of Nonlinear Wave Equations Ü Dinlemez Gazi University Journal of Science 22 (2), 83-87, 2009 | 4 | 2009 |

Investigating (p, q)-hybrid Durrmeyer-type operators in terms of their approximation properties ÜD KANTAR, Ý Yüksel Gazi University Journal of Science Part A: Engineering and Innovation, 1-11, 2022 | 3 | 2022 |

Approximation Properties of Durrmeyer Type of (*p*, *q*)‐Bleimann, Butzer, and Hahn OperatorsQB Cai, Ý Yüksel, Ü Dinlemez Kantar, B Çekim Journal of Function Spaces 2019 (1), 7047656, 2019 | 3 | 2019 |

Properties of the far field operator in the inverse conductive scattering problem G Torun, ÜD Ateþ Applied mathematics and computation 175 (2), 1503-1514, 2006 | 3 | 2006 |

Voronovskaja Type Approximation Theorem For 𝒒-Szász-Beta-Stancu Type Operators Ü Dinlemez, Ý Yüksel Gazi University Journal of Science 29 (1), 115-122, 2016 | 2 | 2016 |

On approximation of Baskakov-Durrmeyer type operators of two variables Ý Yüksel, Ü Dinlemez Kantar, B Altýn Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys 78 (1), 123-134, 2016 | 2 | 2016 |

Weighted Approximation by the 𝒒− Szász− Schurer− Beta Type Operators Ý Yüksel, Ü DÝNLEMEZ Gazi University Journal of Science 28 (2), 231-238, 2015 | 2 | 2015 |

Global and Blow‐Up Solutions for Nonlinear Hyperbolic Equations with Initial‐Boundary Conditions Ü Dinlemez, E Aktaþ International Journal of Differential Equations 2014 (1), 724837, 2014 | 2 | 2014 |

Investigation of the Asymptotic Behavior of Generalized Baskakov-Durrmeyer-Stancu Type Operators G Torun, MM Boyraz, ÜD Kantar Cumhuriyet Science Journal 43 (1), 98-104, 2022 | 1 | 2022 |

D.: Approximation properties of generalized λ-Bernstein-Stancu type operators QB Cai, G Torun, Ü Kantar J. Math 2021, 5590439, 2021 | 1 | 2021 |

Approximation by *q*-Baskakov–Durrmeyer Type Operators of Two VariablesI Yüksel, Ü Dinlemez, B Altýn Computational Analysis: AMAT, Ankara, May 2015 Selected Contributions, 195-209, 2016 | 1 | 2016 |

Global existence, uniqueness of weak solutions and determining functionals for nonlinear wave equations Ü Dinlemez Advances in Pure Mathematics 3 (5), 451-457, 2013 | 1 | 2013 |